Меню Рубрики

Защитные рефлексы кашель чихание мигание рвота осуществляются отделом мозга

Продолговатый мозг, так же как и спинной, выполняет две функции — рефлекторную и проводниковую. Из продолговатого мозга и моста выходят восемь пар черепных нервов (с V по XII) и он, так же как и спинной мозг, имеет прямую чувствительную и двигательную связь с периферией. По чувствительным волокнам он получает импульсы — информацию от рецепторов кожи головы, слизистых оболочек глаз, носа, рта (включая вкусовые рецепторы), от органа слуха, вестибулярного аппарата (органа равновесия), от рецепторов гортани, трахеи, легких, а также от интерорецепторов сердечно-сосудистой системы и системы пищеварения.

Через продолговатый мозг осуществляются многие простые и сложнейшие рефлексы, охватывающие не отдельные метамеры тела, а системы органов, например системы пищеварения, дыхания, кровообращения. Рефлекторную деятельность продолговатого мозга можно наблюдать на бульбарной кошке, т. е. кошке, у которой произведена перерезка ствола мозга выше продолговатого. Рефлекторная деятельность такой кошки сложна и многообразна.
Через продолговатый мозг осуществляются следующие рефлексы:

  • Защитные рефлексы: кашель, чиханье, мигание, слезоотделение, рвота.
  • Пищевые рефлексы: сосание, глотание, сокоотдение (секреция) пищеварительных желез.
  • Сердечно-сосудистые рефлексы, регулирующие деятельность сердца и кровеносных сосудов.
  • В продолговатом мозге находится автоматически работающий дыхательный центр, обеспечивающий вентиляцию легких.
  • В продолговатом мозге расположены вестибулярные ядра.

От вестибулярных ядер продолговатого мозга начинается нисходящий вестибулоспинальный тракт, участвующий в осуществлении установочных рефлексов позы, а именно в перераспределении тонуса мышц. Бульбарная кошка ни стоять, ни ходить не может, но продолговатый мозг и шейные сегменты спинного обеспечирают те сложные рефлексы, которые являются элементами стояния и ходьбы. Все рефлексы, связанные с функцией стояния, называются установочными рефлексами. Благодаря им животное вопреки силам земного притяжения удерживает позу своего тела, как правило, теменем кверху.

Особое значение этого отдела центральной нервной системы определяется тем, что в продолговатом мозге находятся жизненно важные центры — дыхательный, сердечно-сосудистый, поэтому не только удаление, а даже повреждение продолговатого мозга заканчивается смертью.
Помимо рефлекторной, продолговатый мозг выполняет проводниковую функцию. Через продолговатый мозг проходят проводящие пути, соединяющие двусторонней связью кору, промежуточный, средний мозг, мозжечок и спинной мозг.

Физиология среднего мозга

Особое значение этого отдела центральной нервной системы определяется тем, что в продолговатом мозге находятся жизненно важные центры — дыхательный, сердечно-сосудистый, поэтому не только удаление, а даже повреждение продолговатого мозга заканчивается смертью.
Помимо рефлекторной, продолговатый мозг выполняет проводниковую функцию. Через продолговатый мозг проходят проводящие пути, соединяющие двусторонней связью кору, промежуточный, средний мозг, мозжечок и спинной мозг.

Физиология среднего мозга

Средний мозг играет важную роль в регуляции мышечного тонуса и в осуществлении установочных и выпрямительных рефлексов, благодаря которым возможны стояние и ходьба.

РисПоперечный (вертикальный) разрез среднего мозга на уровне верхних холмиков.

Роль среднего мозга в регуляции мышечного тонуса лучше всего наблюдать на кошке, у которой сделан поперечный разрез между продолговатым и средним мозгом. У такой кошки резко повышается тонус, мышц, особенно разгибателей. Голова запрокидывается назад, резко выпрямляются лапы. Мышцы настолько сильно сокращены, что попытка согнуть конечность заканчивается неудачей — она сейчас же распрямляется. Животное, поставленное на вытянутые, как палки, лапы, может стоять. Такое состояние называется децеребрационной ригидностью.

Если разрез сделать выше среднего мозга, то децеребрационная ригидность не возникает. Примерно через 2 часа такая кошка делает усилие подняться. Сначала она поднимает голову, затем туловище, потом встает на лапы и может начать ходить. Следовательно, нервные аппараты регуляции мышечного тонуса и функции стояния и ходьбы находятся в среднем мозге.

Явления децеребрационной ригидности объясняют тем, что перерезкой отделяются от продолговатого и спинного мозга красные ядра и ретикулярная формация. Красные ядра не имеют непосредственной связи с рецепторами и эффекторами, но они связаны со всеми отделами центральной нервной системы. К ним подходят нервные волокна от мозжечка, базальных ядер, коры полушарий большого мозга. От красных ядер начинается нисходящий руброспинальный тракт, по которому передаются импульсы к двигательным нейронам спинного мозга. Его называют экстрапирамидным трактом. Чувствительные ядра среднего мозга выполняют ряд важнейших рефлекторных функций. Ядра, находящиеся в верхних холмиках, являются первичными зрительными центрами. Они получают импульсы от сетчатки глаза и участвуют в ориентировочном рефлексе, т. е. повороте головы к свету. При этом происходит изменение ширины зрачка и кривизны хрусталика (аккомодация), способствующая ясному видению предмета.

Ядра нижних холмиков являются первичными слуховыми центрами. Они участвуют в ориентировочном рефлексе на звук — поворот головы в сторону звука. Внезапные звуковые и световые раздражения вызывают сложную реакцию настораживания, мобилизующую животное на быструю ответную реакцию.

источник

Уста­но­ви­те со­от­вет­ствие между ха­рак­те­ри­сти­ка­ми и от­де­ла­ми го­лов­но­го мозга: к каж­дой по­зи­ции, дан­ной в пер­вом столб­це, под­бе­ри­те со­от­вет­ству­ю­щую по­зи­цию из вто­ро­го столб­ца.

А) обес­пе­че­ние по­сто­ян­ства внут­рен­ней среды и об­мен­ных про­цес­сов

Б) ори­ен­ти­ро­воч­ные ре­флек­сы на зри­тель­ные и зву­ко­вые раз­дра­жи­те­ли, по­во­рот го­ло­вы

В) ре­гу­ли­ру­ет де­я­тель­ность ды­ха­тель­ной, пи­ще­ва­ри­тель­ной и сер­деч­но-со­су­ди­стой си­стем

Г) ре­гу­ля­ция мы­шеч­но­го то­ну­са и позы тела

Д) обес­пе­чи­ва­ет за­щит­ные ре­флек­сы чи­ха­ния, мор­га­ния, кашля, рвоты

Е) сбор и оцен­ка всей ин­фор­ма­ции, посту-

За­пи­ши­те в ответ цифры, рас­по­ло­жив их в по­ряд­ке, со­от­вет­ству­ю­щем бук­вам:

1) средний:Б) ориентировочные рефлексы на зрительные и звуковые раздражители, поворот головы;

Г) регуляция мышечного тонуса и позы тела;

2) продолговатый:В) регулирует деятельность дыхательной, пищеварительной и сердечно-сосудистой систем;

Д) обеспечивает защитные рефлексы чихания, моргания, кашля, рвоты;

3) промежуточный:А) обеспечение постоянства внутренней среды и обменных процессов;

Е) сбор и оценка всей информации, поступающей от органов чувств

Функции отделов головного мозга.

Продолговатый мозг является продолжением спинного мозга. В нем находятся ядра VIII—XII пар череп но мозговых нервов. Здесь расположены жизненно важные центры регуляции дыхания, сердечно-сосудистой деятельности пищеварения, обмена веществ. Ядра продолговатого мозга принимают участие в осуществлении безусловных пищевых рефлексов (отделение пищеварительных соков, сосание, глотание), защитных рефлексов (рвота, чихание, кашель, моргание). Проводниковая функция продолговатого мозга заключается в передаче импульсов от спинного мозга в головной и в обратном направлении.

Через средний мозг проходят восходящие пути к коре больших полушарий и мозжечку и нисходящие пути к продолговатому и спинному мозгу (проводниковая функция). В среднем мозге находятся ядра III и IV пар черепно-мозговых нервов. С их участием осуществляются первичные ориентировочные рефлексы на свет и звук: движение глаз, поворот головы в сторону источника раздражения. Средний мозг также участвует в поддержании тонуса скелетных мышц.

Промежуточный мозг расположен над средним мозгом. Главные его отделы — таламус (зрительные бугры) и гипоталамус (подбугровая область). Через таламус к коре головного мозга проходят центростремительные импульсы от всех рецепторов организма (за исключением обонятельного). Информация получает в таламусе соответствующую эмоциональную окраску и передается в большие полушария мозга. Гипоталамус является главным подкорковым центром регуляции вегетативных функций организма, всех видов обмена веществ, температуры тела, постоянства внутренней среды (гомеостаза), деятельности эндокринной системы. В гипоталамусе расположены центры чувства насыщения, голода, жажды, удовольствия. Ядра гипоталамуса участвуют в регуляции чередования сна и бодрствования.

Считаем некорректным относить «Е) сбор и оценка всей информации, поступающей от органов чувств» к функциям промежуточного мозга. Это функция переднего мозга.

Передний мозг — самый крупный и развитый отдел головного мозга. В сенсорные (чувствительные) зоны коры поступают импульсы от всех рецепторов организма. Так, зрительная зона коры расположена в затылочной доле, слуховая — в височной и т. д. В ассоциативных зонах коры осуществляется хранение, оценка, сопоставление поступающей информации с полученной ранее и т. п. Таким образом, в этой зоне происходят процессы запоминания, научения, мышления.

Но изз тех вариантов, которые предлагаются для выбора и с учетом функции промежеточного мозга (Через таламус к коре головного мозга проходят центростремительные импульсы от всех рецепторов организма)

источник

Функции спинного мозга. Спинной мозг выполняет две функции – рефлекторную и проводниковую. Рефлексы спинного мозга можно подразделить на двигательные (осуществляемые альфа-мотонейронами передних рогов), и вегетативные (осуществляемые клетками боковых рогов). Двигательные элементарные рефлексы – сгибательные и разгибательные, сухожильные, миотатические, ритмические, тонические. В спинном мозге расположены центры вегетативной нервной системы: сосудодвигательные, потоотделительные, дыхательные, мочеотделительные, дефекации, половые.

Проводниковая функция спинного мозга связана с передачей в вышележащие отделы нервной системы потока информации с периферии и с проведением импульсов, идущих из головного мозга в спинной.

Функции головного мозга. В головном мозге выделяют пять основных отделов: продолговатый, задний, средний, промежуточный и передний (конечный) мозг.

Функции продолговатого мозга. Выполняет две функции – рефлекторную и проводниковую. Через продолговатый мозг осуществляются следующие рефлексы: 1) защитные: кашель, чихание, мигание, рвота, слезоотделение; 2) пищевые: сосание, глотание, сокоотделение пищеварительных желез; 3) сердечно-сосудистые, регулирующие деятельность сердца и кровеносных сосудов; 4) в продолговатом мозге находится дыхательный центр, обеспечивающий вентиляцию легких; 5) изменение позы осуществляется за счет статических и статокинетических рефлексов.

Через продолговатый мозг проходят проводящие пути , соединяющие двусторонней связью кору, промежуточный, средний, мозжечок и спинной мозг.

Функции заднего мозга. К заднему мозгу относятся мост и мозжечок.Функции моста определяются входящими в него структурами. Через мост проходят восходящие и нисходящие пути соединяющие продолговатый мозг и мозжечок с большими полушариями. Он проводит импульсы из одного полушария мозжечка в другое, координируя движения мышц на обоих сторонах тела; участвует в регуляции сложных двигательных актов, мышечного тонуса и равновесия тела.

Мозжечок является надсегментарным отделом ЦНС, не имеющим прямой связи с исполнительными органами. Он принимает участие в регуляции позно-тонических реакций и координации двигательной деятельности. После удаления мозжечка у животного наступают растройства двигательных актов: нарушаются рефлексы положения тела, статические рефлексы и произвольные движения. При одностороннем удалении мозжечка возникает нарушение движений на стороне операции: тонус мышц повышается, голова и туловище поворачивается в эту же сторону, и поэтому животное совершает движения по кругу. Мозжечок принимает участие в регуляции вегетативных функций: дыхания, пищеварения, сердечно-сосудистой деятельности, термореруляции.

Функции среднего мозга. В состав среднего мозга входят ножки мозга и четверохолмие. Основные центры среднего мозга: красное ядро и черная субстанция. Красное ядро среднего мозга выполняет моторные функции – регулирует тонус скелетных мышц. Если у кошки сделать поперечный разрез между продолговатым и средним мозгом, то у нее резко повышается тонус мышц, особенно разгибателей. Животное, поставленное на вытянутые, как палки, лапы, может стоять. Такое состояние называется децеребрационной ригидностью.

Черная субстанция среднего мозга активирует передний мозг, придавая эмоциональную окраску некоторым поведенческим реакциям. С функцией черной субстанции связана реализация рефлексов жевания и глотания.

Ядра верхних холмиков являются первичными зрительными центрами. Они осуществляют поворот глаз и головы в сторону раздражителя (зрительный ориентировочный рефлекс). Ядра нижних холмиков являются первичными слуховыми центрами. Они регулируют ориентировочные рефлексы, возникающие в ответ на звуковые раздражения.

Функции промежуточного мозга. Промежуточный мозг состоит из таламуса, гипоталамуса, эпиталамуса и метаталамуса. Таламус является коллектором практически всех видов чувствительности (кроме обонятельной). По функциональному значению ядра таламуса делят на специфические, неспецифические и ассоциативные.

Специфические ядра таламуса таламуса осуществляют регуляцию тактильной, температурной, болевой и вкусовой чувствительности, а также слуховых и зрительных ощущений. Неспецифические ядра таламуса оказывают как активирующее, так и тормозящее влияние на небольшие области коры. Ассоциативные ядра таламуса передают импульсы от переключающих ядер в ассоциативные зоны коры.

Гипоталамус является высшим подкорковым центром вегетативной нервной системы. Функционально ядра гипоталамуса делятся на переднюю, среднюю и заднюю группы ядер. Передние ядра гипоталамуса являются центрами парасимпатической регуляции, они также продуцируют релизинг-факторы, регулирующие активность гипофиза. Задние ядра регулируют симпатические влияния. Стимуляция ядер средней группы приводит к снижению влияний симпатической нервной системы.

Эпиталамус (эпифиз) регулирует процессы сна и бодрствования. Метаталамус (коленчатые тела) участвуют в регуляции зрения и слуха.

Лимбическая система. К лимбической системе относят поясную извилину, гиппокамп, часть ядер таламуса и гипоталамуса, перегородку и др. Эта система участвует в регуляции вегетативных функций, оказывает влияние на смену сна и бодрствования, обеспечивает процессы запоминания и играет важную роль в формировании эмоций.

Ретикулярная формация. Это особая система нервных клеток с густо переплетенными отростками. Она распологается на всем протяжении продолговатого, заднего, среднего и промежуточного мозга и оказывает активирующее и тормозящее влияние на нейроны разных отделов ЦНС.

Базальные ганглии (ядра).К базальным ядрам относятся полосатое тело, состоящее из хвостатого и чечевицеобразного ядер и оргады. Эти ядра координируют движения, участвуют в образовании условных рефлексов и осуществлении сложных безусловных рефлексов (оборонительных, пищедобывательных и др.).

Функции коры больших полушарий.Полушария большого мозга состоят из белого вещества, покрытого снаружи серым (корой), толщина которой в различных отделах больших полушарий составляет 1,3-5 мм. Количество нейронов в коре достигает 10-14 млд. В коре большого мозга тела нейронов образуют шесть слоев: 1-й молекулярный; 2-й наружный зернистый; 3-й наружный пирамидный; 4-й внутренний зернистый; 5-й внутренний пирамидный; 6-й мультиморфный. Участки коры, сходные по строению, топографии, по срокам дифференцировки в онтогенезе называют цитоархитектоническими полями. К. Бродман выделил в коре 52 цитоархитектонических (клеточных) поля.

Локализация функций в коре. В коре большого мозга выделяют следующие зоны: чувствительные (сенсорные), двигательные (моторные) и ассоциативные

Сенсорные зоны коры. Афферентные импульсы от всех рецепторов (за исключением обонятельных), поступают в кору через таламус. Центральные проекции соматической и висцеральной чувствительности обособлены в первичную и вторичную соматосенсорные зоны. Первичная соматосенсорная зона расположена в постцентральной извилине (поля 1,2,3). К ней поступают импульсы от рецепторов кожи и двигательного аппарата. Вторичная соматосенсорная зона расположена вентральнее в районе латеральной (Сильвиевой) борозды. Здесь имеется проекция поверхности тела, но менее четкая чем в первичной соматосенсорной области.

Зрительная зона коры располагается в затылочной области коры по обоим сторонам шпорной борозды (поля 17,18,19). Слуховая зона коры располагается в височной области (поля 41,42). Обонятельная зона коры находится в основании мозга, в области парагиппокампальной извилины (поле 11). Проекция вкусового анализатора локализуется в нижней части постцентральной извилины (поле 43). Речевые зоны коры. С функцией речи в коре полушарий большого мозга связаны поля 44 и 45 (центр Брока) и поле 22 (центр Вернике), расположенные в левом полушарии большого мозга праворуких людей.

Моторные зоны коры локализованы в предцентральной извилине (поля 4, 6). Электрическое раздражение верхней части извилины вызывает движение мышц ног и туловища, средней – рук, нижней – мышц лица. Особенно велика зона, управляющая движениями кисти руки, языком, мимической мускулатурой.

Ассоциативные зоны коры занимают 1/3 всей ее площади и осуществляют связь между различными областями коры, интегрируя, все поступающие в кору импульсы в целостные акты научения (чтение, речь, письмо), логического мышления, памяти и, наконец, сознательное отражение реальной действительности.

Биоэлектрическая активность коры. Колебания электрических потенциалов коры впервые были записаны В.В. Правдич-Неминским в 1913 г. Кривая отражающая электрическую активность корковых нейронов называется электроэнцефалограммой (ЭЭГ). Для регистрации ЭЭГ используют многоканальные электроэнцефалографы, а при расположении электродов применяют международную схему “10-20”.

Различают следующие ритмы ЭЭГ: альфа-ритм с частотой 8-13 Гц и амплитудой 50 мкВ; бета-ритм с частотой 14- 30 Гц и амплитудой 25 мкВ; тета-ритм с частотой 4-8 Гц и амплитудой 100-150 мкВ; дельта-ритм с частотой 0,5-4 Гц и амплитудой 250-300 мкВ .

В клинической практике ЭЭГ позволяет оценить функциональное состояние мозга.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

источник

К заднему мозгу относятся мост и мозжечок. Он развивается из четвертого мозгового пузыря (metencephalon).

Мост (pons) снизу граничит с продолговатым мозгом, сверху переходит в ножки мозга, боковые его отделы образуют средние мозжечковые ножки. В передней (базилярной) части моста располагаются скопления серого вещества — собственные ядра моста, в задней части покрышки моста лежат ядра верхней оливы, ретикулярной формации и V — VIII пар черепных нервов. Эти нервы выходят на основании мозга сбоку от моста и позади него, на границе с мозжечком и продолговатым мозгом. Белое вещество моста в его передней части представлено поперечно идущими волокнами, направляющимися в средние мозжечковые ножки. Они пронизаны мощными продольными пучками волокон пирамидных путей, образующих затем пирамиды продолговатого мозга и направляющихся в спинной мозг. В задней части моста (покрышка моста) проходят восходящие и нисходящие системы волокон (рис. 113).


Рис. 113. Мозговой ствол (вид спереди). 1 — передняя срединная щель; 2 — пирамиды продолговатого мозга; 3 — олива; 4 — мозжечок; 5 — перекрест пирамид (место перехода продолговатого мозга в спинной); 6 — средняя мозжечковая ножка; 7 — мост; 8 — межножковая ямка; 9 — ножка мозга; III — XII корешки черепных нервов; С — первый спинномозговой нерв

Продолговатый мозг и мост выполняют две функции — рефлекторную и проводниковую. По чувствительным волокнам корешков черепных нервов он получает импульсы — информацию от рецепторов кожи головы, слизистых оболочек глаз, носа, рта (включая вкусовые рецепторы), от органа слуха, вестибулярного аппарата (органа равновесия), от рецепторов гортани, трахеи, легких, а также от интерорецепторов сердечно-сосудистой системы и пищеварительного аппарата.

Читайте также:  Холодный пот рвота боль в желудке

Через продолговатый мозг осуществляются многие простые и сложные рефлексы, охватывающие не отдельные метамеры тела, а системы органов, например системы пищеварения, дыхания, кровообращения. Рефлекторную деятельность продолговатого мозга можно наблюдать на бульбарной кошке, т. е. кошке, у которой произведена перерезка ствола мозга выше продолговатого. Рефлекторная деятельность такой кошки сложна и многообразна.

Через продолговатый мозг осуществляются следующие рефлексы: 1) защитные: кашель, чиханье, мигание, слезоотделение, рвота; 2) пищевые: сосание, глотание, сокоотделение пищеварительных желез; 3) сердечно-сосудистые, регулирующие деятельность сердца и кровеносных сосудов; 4) в продолговатом мозге находится автоматически работающий дыхательный центр, обеспечивающий вентиляцию легких; 5) в продолговатом мозге и мосту расположены вестибулярные ядра.

От вестибулярных ядер продолговатого мозга начинается нисходящий вестибулоспинальный тракт, участвующий в осуществлении установочных рефлексов позы, а именно в перераспределении тонуса мышц. Бульбарная кошка ни стоять, ни ходить не может, но продолговатый мозг и шейные сегменты спинного мозга обеспечивают те сложные рефлексы, которые являются элементами стояния и ходьбы. Все рефлексы, связанные с функцией стояния, называются установочными рефлексами. Благодаря им животное удерживает свое тело, как правило, теменем кверху.

Особое значение этого отдела ЦНС определяется тем, что в продолговатом мозге находятся жизненно важные центры: дыхательный, сердечно-сосудистый. Поэтому не только удаление, а даже повреждение продолговатого мозга заканчивается смертью.

Помимо рефлекторной, продолговатый мозг выполняет проводниковую функцию. Через него проходят проводящие пути, соединяющие двусторонней связью кору, промежуточный, средний мозг, мозжечок и спинной мозг.

Мозжечок (cerebellum) расположен дорсально от моста и продолговатого мозга. В нем выделяют два полушария и среднюю часть — червь. Поверхность мозжечка покрыта слоем серого вещества (кора мозжечка) и образует узкие извилины, разделенные бороздами. С их помощью поверхность мозжечка делится на дольки. Центральная часть мозжечка состоит из белого вещества, в котором заложены скопления серого вещества — ядра мозжечка. Самое большое из них — зубчатое ядро. Мозжечок связан с мозговым стволом тремя парами ножек: верхние соединяют его со средним мозгом, средние — с мостом, нижние — с продолговатым мозгом. В ножках проходят пучки волокон, соединяющих мозжечок с различными частями головного и спинного мозга.

Перешеек ромбовидного мозга в процессе развития составляет границу между задним и средним мозгом. Из него развиваются верхние мозжечковые ножки, расположенные между ними верхний мозговой парус и треугольники петли, лежащие кнаружи от верхних мозжечковых ножек.

Четвертый (IV) желудочек (ventriculus quartus) в процессе развития представляет собой общую полость продолговатого и заднего мозга. Внизу IV желудочек сообщается с центральным каналом спинного мозга, вверху переходит в мозговой водопровод среднего мозга, а в области крыши связан тремя отверстиями с субарахноидальным пространством головного мозга. Передняя (вентральная) стенка его — дно IV желудочка — называется ромбовидной ямкой. Нижняя часть ромбовидной ямки образована продолговатым мозгом, а верхняя — мостом и перешейком. Задняя (дорсальная) стенка — крыша IV желудочка — образована верхним и нижним мозговыми парусами и дополняется сзади пластинкой мягкой оболочки мозга, выстланной эпендимой. В этом участке находится большое количество кровеносных сосудов, образующих сосудистые сплетения IV желудочка. Место схождения верхнего и нижнего парусов вдается в мозжечок и образует шатер. Ромбовидная ямка имеет жизненно важное значение, так как в этой области заложено большинство ядер черепных нервов (V — XII пары).

Мозжечок является надсегментарным отделом ЦНС, не имеющим прямой связи с рецепторами и эффекторами организма. Многочисленными путями он связан со всеми отделами ЦНС. К нему направляются афферентные проводящие пути, несущие импульсы от проприорецепторов мышц, сухожилий, вестибулярных ядер продолговатого мозга, подкорковых ядер и коры полушарий большого мозга. В свою очередь мозжечок посылает импульсы ко всем отделам ЦНС.

Функции мозжечка исследуют путем его раздражения, частичного или полного удаления и изучения биоэлектрических явлений. Последствия удаления мозжечка и выпадения его функций итальянский физиолог Лючиани охарактеризовал знаменитой триадой А: астазия, атония и астения. Последующие исследователи добавили еще один симптом — атаксию.

Безмозжечковая собака стоит на широко расставленных лапах, совершает непрырывные качательные движения (астазия). У нее нарушено правильное распределение тонуса мышц сгибателей и разгибателей (атония). Движения плохо координированы, размашисты, несоразмерны, резки. При ходьбе лапы забрасываются за среднюю линию (атаксия), что не наблюдается у нормальных животных. Атаксия объясняется тем, что нарушается контроль движений. Выпадает анализ сигналов от проприорецепторов мышц и сухожилий. Собака не может попасть мордой в миску с едой. Наклон головы вниз или в сторону вызывает сильное противоположное движение.

Движения очень утомляют: животное, пройдя несколько шагов, ложится и отдыхает. Этот симптом называется астенией.

Со временем двигательные расстройства у безмозжечковой собаки сглаживаются. Она самостоятельно ест, походка ее почти нормализуется. Только предвзятое наблюдение выявляет некоторые нарушения (фаза компенсации).

Как показал Э. А. Асратян, компенсация функций происходит за счет коры большого мозга. Если у такой собаки удалить кору, то все нарушения выявляются снова и уже никогда не компенсируются.

Мозжечок участвует в регуляции движений, делая их плавными, точными, соразмерными. По образному выражению Л. А. Орбели, мозжечок является помощником коры головного мозга по управлению скелетной мускулатурой и деятельностью вегетативных органов. Как показали исследования Л. А. Орбели, у безмозжечковых собак нарушаются вегетативные функции. Константы крови, сосудистый тонус, работа пищеварительного тракта и другие вегетативные функции становятся очень неустойчивыми, легко сдвигаются под влиянием тех или иных причин (прием пищи, мышечная работа, изменение температуры и др.).

При удалении половины мозжечка нарушаются двигательные функции на стороне операции. Это объясняется тем, что проводящие пути мозжечка либо не перекрещиваются вовсе, либо перекрещиваются 2 раза.

источник

Продолговатый мозг является продолжением спинного мозга и поэтому имеет черты сегментарного строения. Спереди он граничит с мостом. На передней поверхности продолговатого мозга расположены два возвышения (пирамиды). В них проходит пирамидный путь, обеспечивающий произвольные движения. На задней поверхности залегают ядра вторых нейронов глубокой чувствительности. Продолговатый мозг содержит ядра IX, X, XI и XII черепных нервов, ретикулярную формацию, а также жизненно важные центры: сосудодвигательный (поддерживает уровень артериального давления), дыхательный (контролирует ритмичность и глубину дыхания), пищеварительный, слюно– и слезоотделительные центры.

Продолговатый мозг регулирует ряд сенсорных функций: рецепцию кожной чувствительности лица — в сенсорном ядре тройничного нерва; первичный анализ рецепции вкуса — в ядре языкоглоточного нерва; рецепцию слуховых раздражений — в ядре улиткового нерва; рецепцию вестибулярных раздражений — в верхнем вестибулярном ядре. В задневерхних отделах продолговатого мозга проходят пути кожной, глубокой, висцеральной чувствительности, часть из которых переключается здесь на второй нейрон (тонкое и клиновидное ядра). На уровне продолготоватого мозга перечисленные сенсорные функции реализуют первичный анализ силы и качества раздражения.

Проводниковые функции. Через продолготоватый мозг проходят все восходящие и нисходящие пути спинного мозга. В нем берут начало вестибулоспинальный, оливоспинальный и ретикулоспинальный тракты, обеспечивающие тонус и координацию мышечных реакций. В продолговатом мозге заканчиваются пути из коры большого мозга — корковоретикулярные пути. Здесь заканчиваются восходящие пути проприоцептивной чувствительности из спинного мозга. Такие образования головного мозга, как мост, средний мозг, мозжечок, таламус, гипоталамус и кора большого мозга, имеют двусторонние связи с продолговатым мозгом. Наличие этих связей свидетельствует об участии продолговатого мозга в регуляции тонуса скелетной мускулатуры, вегетативных и высших интегративных функций, анализе сенсорных раздражений.

Ядра продолговатого мозга участвуют в выполнении многих рефлекторных актов, в том числе защитные (кашель, мигание, слёзоотделение, чихание). Нервные центры (ядра) продолговатого мозга участвуют в рефлекторных актах глотания, регулируют секреторную активность пищеварительных желёз. Вестибулярные (преддверные) ядра, в которых берёт начало преддверно-спинномозговой путь, выполняют сложнорефлекторные акты перераспределения тонуса скелетных мышц с целью поддержания равновесия тела и обеспечения «позы стояния». Эти рефлексы получили название установочных рефлексов.

На передней (вентральной) поверхности продолговатого мозга по средней линии проходит fissura mediana anterior, составляющая продолжение одноименной борозды спинного мозга. По бокам ее на той и другой стороне находятся два продольных тяжа — пирамиды, pyramides medullae oblongatae, которые как бы продолжаются в передние канатики спинного мозга. Составляющие пирамиды пучки нервных волокон частью перекрещиваются в глубине fissura mediana anterior с аналогичными волокнами противоположной стороны — decussatio pyramidum, после чего спускаются в боковом канатике на другой стороне спинного мозга — tractus corticospinal (pyramidalis) lateralis, частью остаются неперекрещенными и спускаются в переднем канатике спинного мозга на своей стороне — tractus corticospinalis (pyramidalis) anterior. Пирамиды отсутствуют у низших позвоночных и появляются по мере развития новой коры; поэтому они наиболее развиты у человека, так как пирамидные волокна соединяют кору большого мозга, достигшую у человека наивысшего развития, с ядрами черепных нервов и передними рогами спинного мозга. Латерально от пирамиды лежит овальное возвышение — оливa, oliva, которая отделена от пирамиды бороздкой, sulcus anterolateral.

На задней (дорсальной) поверхности продолговатого мозга тянется sulcus medianus posterior — непосредственное продолжение одноименной борозды спинного мозга. По бокам ее лежат задние канатики, ограниченные латерально с той и другой стороны слабо выраженной sulcus posterolaterals. По направлению кверху задние канатики расходятся в стороны и идут к мозжечку, входя в состав его нижних ножек, pedunculi cerebellares inferiores, окаймляющих снизу ромбовидную ямку. Каждый задний канатик подразделяется при помощи промежуточной борозды на медиальный, fasciculus gracilis, и латеральный, fasciculus cuneatus. У нижнего угла ромбовидной ямки тонкий и клиновидный пучки приобретают утолщения — tuberculum gracilum и tuberculum cuneatum. Эти утолщения обусловлены соименными с пучками ядрами серого вещества, nucleus gracilis и nucleus cuneatus. В названных ядрах оканчиваются проходящие в задних канатиках восходящие волокна спинного мозга (тонкий и клиновидный пучки). Латеральная поверхность продолговатого мозга, находящаяся между sulci posterolateralis et anterolateralis, соответствует боковому канатику. Из sulcus posterolateralis позади оливы выходят XI, X и IX пары черепных нервов. В состав продолговатого мозга входит нижняя часть ромбовидной ямки.

Белое вещество продолговатого мозга содержит длинные и короткие волокна.

К длинным относятся проходящие транзитно в передние канатики спинного мозга нисходящие пирамидные пути, частью перекрещивающиеся в области пирамид. Кроме того, в ядрах задних канатиков (nuclei gracilis et cuneatus) находятся тела вторых нейронов восходящих чувствительных путей. Их отростки идут от продолговатого мозга к таламусу, tractus bulbothalamicus. Волокна этого пучка образуют медиальную петлю, lemniscus medialis, которая в продолговатом мозге совершает перекрест, decussatio lemniscorum, и в виде пучка волокон, расположенных дорсальнее пирамид, между оливами — межоливныи петлевой слой — идет далее.

Таким образом, в продолговатом мозге имеется два перекрестка длинных проводящих путей: вентральный двигательный, decussatio pyramidum, и дорсальный чувствительный, decussatio lemniscorum.

К коротким путям относятся пучки нервных волокон, соединяющие между собой отдельные ядра серого вещества, а также ядра продолговатого мозга с соседними отделами головного мозга. Среди них следует отметить tractus olivocerebellaris и лежащий дорсально от межоливного слоя fasciculus longitudindlis medialis. Топографические взаимоотношения главнейших образований продолговатого мозга видны на поперечном срезе, проведенном на уровне олив. Отходящие от ядер подъязычного и блуждающего нервов корешки делят продолговатый мозг на той и другой стороне на три области: заднюю, боковую и переднюю. В задней лежат ядра заднего канатика и нижние ножки мозжечка, в боковой — ядро оливы и formatio reticularis и в передней — пирамиды.


На верхней схеме продолговатый мозг расположен снизу (выделен фиолетовым цветом).


Фото: Anatomist90

Функции продолговатого мозга

Расположенные в продолговатом мозге важнейшие дыхательные центры участвуют в регуляции функции дыхания (вентиляции легких), деятельности сердца и сосудов.

Через продолговатый мозг осуществляются многие простые и сложнейшие рефлексы, охватывающие не отдельные метамеры тела, а системы органов, например системы пищеварения, дыхания, кровообращения. Рефлекторную деятельность продолговатого мозга можно наблюдать на бульбарной кошке, т. е. кошке, у которой произведена перерезка ствола мозга выше продолговатого. Рефлекторная деятельность такой кошки сложна и многообразна.

Через продолговатый мозг осуществляются следующие рефлексы:

■ Защитные рефлексы: кашель, чиханье, мигание, слезоотделение, рвота.
■ Пищевые рефлексы: сосание, глотание, сокоотдение (секреция) пищеварительных желез.
■ Сердечно-сосудистые рефлексы, регулирующие деятельность сердца и кровеносных сосудов.
■ В продолговатом мозге находится автоматически работающий дыхательный центр, обеспечивающий вентиляцию легких.
■ В продолговатом мозге расположены вестибулярные ядра.

От вестибулярных ядер продолговатого мозга начинается нисходящий вестибулоспинальный тракт, участвующий в осуществлении установочных рефлексов позы, а именно в перераспределении тонуса мышц. Бульбарная кошка ни стоять, ни ходить не может, но продолговатый мозг и шейные сегменты спинного обеспечирают те сложные рефлексы, которые являются элементами стояния и ходьбы. Все рефлексы, связанные с функцией стояния, называются установочными рефлексами. Благодаря им животное вопреки силам земного притяжения удерживает позу своего тела, как правило, теменем кверху.

Особое значение этого отдела центральной нервной системы определяется тем, что в продолговатом мозге находятся жизненно важные центры — дыхательный, сердечно-сосудистый, поэтому не только удаление, а даже повреждение продолговатого мозга заканчивается смертью.
Помимо рефлекторной, продолговатый мозг выполняет проводниковую функцию. Через продолговатый мозг проходят проводящие пути, соединяющие двусторонней связью кору, промежуточный, средний мозг, мозжечок и спинной мозг.

источник

1. История, предмет и задачи физиологии и ВНД 2

2. Возбудимость, возбуждение, раздражители. Х 2

3. Строение нервной ткани. Нейроны, нейроглия. Х 2

4. Потенциал покоя, действия. Х 8

5. Физиология синапсов. Х 9

6. Регуляция функций организма (нервная, рефлекторная, гуморальная). Х 10

7. Динамика нервных процессов в ЦНС (концентрация, иррадиация, индукция и т.д.) Х 14

Иррадиация, концентрация и индукция возбуждения и торможения 14

8. Структура и функция спинного мозга Х 14

Физиология спинного мозга 15

9. Структура и функции продолговатого и среднего мозга. Х 16

Физиология продолговатого мозга 16

Физиология среднего мозга 17

10. Структура и функции промежуточного мозга. Х 17

Физиология промежуточного мозга 17

12. Лимбическая система мозга. Х 19

13. Кора больших полушарий. Структура и функции. Х 20

Основные центры коры головного мозга 20

14. Ретинкулярная формация. Х 21

15. Нервные центры. Свойства. Х 23

16. Функциональная организация мозга.Х 25

Основные центры коры головного мозга 25

Физиология спинного мозга 26

Физиология продолговатого мозга 27

Физиология среднего мозга 28

Физиология среднего мозга 28

Физиология промежуточного мозга 29

17. Сенсорные системы (анализаторы) мозга. Х 31

18. Модулирующие системы мозга. Х 42

19. Основы функциональной организации двигательной системы мозга. 42

20. Структура поведенческого акта. Функциональная система П.К.Анохина Х 42

21. Врожденная деятельность организма. Безусловные рефлексы и их классификация. Х 44

22. Условные рефлексы, их классификация. Х 45

Правила выработки условных рефлексов 45

23. Механ изм образования условного рефлекса. 46

24. Доминанта и условный рефлекс. Х 46

Правила выработки условных рефлексов 47

25. Память, её нейрофизиологические основы, виды. Х 49

26. Вторая сигнальная система. Взаимоотношения 1-й и 2-й сигнальных систем. Х 50

27. Типы ВНД человека и животных. Х 50

28. Типы ВНД человека. Х 51

Типы высшей нервной деятельности 51

29. Торможение условных рефлексов. Х 53

Торможение условных рефлексов 53

30. Функциональные состояния организма (бодрствование, сон и др.) Х 54

31. Межполушарная ассиметрия. 56

32. Зрительный анализатор. Х 61

33. Слуховой анализатор. Х 76

34. Системность в работе КБП. Динамический стереотип. 85

35. Нейрофизиологические основы нервной деятельности (ощущение, восприятие, представления мышление, др.) 85

36. Сознание и подсознание. Х 85

37. Анализ и синтез раздражений в ЦНС. 86

Возбудимость — способность клетки и ткани при воздействии раздражителя переходить в состояние физиологической активности. Возбудимость характеризует процессы в нервной, мышечной и железистой тканях.

Возбуждение (биологическое), реакция живой клетки на раздражение, выработанная в процессе эволюции. При В. живая система переходит из состояния относительного физиологического покоя к деятельности (например, сокращение мышечного волокна, выделение секрета железистыми клетками и др.). В основе В. лежат сложные физико-химические процессы. Начальный пусковой момент В. — изменения ионной проницаемости и электрических потенциалов мембраны. Наиболее полно В. изучено в нервных и мышечных клетках, где оно сопровождается возникновением потенциала действия (ПД), способного без затухания (бездекрементно) распространяться вдоль всей клеточной мембраны. Это свойство ПД обеспечивает быструю передачу информации по периферическим нервам в нервные центры и от них к исполнительным органам — мышцам и железам. В волокнах скелетных мышц ПД распространяется как вдоль мембраны, так и в глубь волокна к сократительному аппарату миофибрилл; поэтому вслед за волной В. по мышечному волокну распространяется волна сокращения. Пусковое влияние ПД оказывает и на секрецию нервными окончаниями химических веществ — медиаторов, оказывающих возбуждающее или тормозящее действие на иннервируемые ткани. ПД подчиняется правилу «всё или ничего»: он возникает только после достижения раздражителем пороговой величины (порог раздражения) и сразу приобретает максимальную амплитуду. Во время развития ПД клетка полностью утрачивает возбудимость, т. е. способность отвечать новым возбуждением на повторный стимул. Возбудимость восстанавливается постепенно лишь после окончания ПД

Читайте также:  Як припинити рвоту у дитини

Раздражители (биологические), различные изменения состояния внешней или внутренней среды организма, способные при воздействии на биологическую систему (например, на нервную, мышечную или железистые ткани) изменять её исходное состояние, т. е. вызывать в ней возбуждение. Различают физические химические и физико-химические Раздражители, которые могут быть адекватными или неадекватными. Раздражители воспринимаются как специфическими нервными окончаниями — рецепторами, так и др. клетками органов и тканей.

Нервная клетка (нейрон) состоит из тела клетки (сомы), отростков (аксонов и дендритов) и концевых пластинок. С помощью дендритов нейроны воспринимают, а посредством аксонов передают возбуждение. На периферии аксоны покрыты шванновскими клетками, образующими миелиновую оболочку с высокими изолирующими свойствами.

Передача возбуждения происходит в нервных окончаниях (синапсах), которые являются местом контакта между нейронами, а также между нейронами и мышечными клетками. В концевых пластинках хранятся химические вещества, нейромедиаторы, выполняющие сигнальные функции. При поступлении нервного импульса медиаторы выделяются в синаптическую щель, передавая возбуждение нейронам или мышечным клеткам.

Для нервных клеток характерно высокое содержание липидов — 50% от сухой массы. Фракция липидов включает разнообразные фосфо-, глико- и сфинголипиды.

Нейроглия. В отличие от нервных клеток, глиальные клетки обладают большим

разнообразием. Их количество в десятки раз превышает количество нервных

клеток. В отличие от нервных клеток, глиальные способны делиться, их

диаметр значительно меньше диаметра нервной клетки и составляет 1,5-4

Долгое время считали, что функция глиоцитов несущественна, и они

выполняют лишь опорную функцию в нервной системе. Благодаря современным

методам исследования, установлено, что глиоциты выполняют ряд важных для

нервной системы функций: опорная, разграничительная, трофическая, секреторная, защитная.

Среди глиоцитов, по морфологической организации, выделяют ряд типов: эпендимоциты, астроциты.

Эпендимоциты образуют плотный слой клеток, элементов, выстилающих

спинномозговой канал и желудочки мозга. В процессе онтогенезе, эпендимоциты

образовывались из спонгиобластов. Эпендимоциты представляют собой слегка

вытянутые клетки с ветвящимися отростками. Некоторые эпендимоциты выполняют

секреторную функцию, выделяя биологически активные вещества в кровь и в

желудочки мозга. Эпендимоциты образуют скопления на капиллярной цепи

желудочков мозга; при введении в кровь красителя, он накапливается

эпендимоцитах, это свидетельствует о том, что последние выполняют функцию

Астроциты выполняют опорную функцию. Это огромное количество глиальных клеток, имеющих множество коротких отростков. Среди астроцитов выделяют 2 группы:

  • плазматические клетки
  • волокнистые астроциты

Олигодендроциты – крупные глиальные клетки, часто сконцентрированы вокруг

нервной клетки и поэтому называются сатиллитными глиацитами. Их функция

очень важна для трофики нервной клетки. При функциональных перенапряжениях

нервной клетки, глиоциты способны прореферировать вещества поступающие

путем пиноцитоза в нервную клетку. При функциональных нагрузках, вначале

происходит истощение синтетического аппарата глиальных клеток, а затем

нервных. При восстановлении (репарации), вначале восстанавливаются функции

нейронов, а затем – глиальных клеток. Таким образом, глиоциты принимают

участи1е в обеспечении функций нейронов. Глиальные клетки существенным

образом способны влиять на трофику мозга, а также на функциональный статус

Передача сигнала от одной клетки к другой или от нервной клетки к

эффекторной клетки осуществляется через синапсы. Синапс состоит из 3-х

элементов: пресинаптическая мембрана (1); постсинаптическая мембрана (2);

Проходящий по аксону импульс достигает пресинаптической мембраны, что

приводит к её деполяризации. При этом пресинаптическая мембрана открывает

кальциевые каналы, кальций мигрирует через эти каналы и связывается с

белком. У пресинаптической мембраны находятся визикулы (шарики, пузырьки) с

медиатором. Комплекс белка и кальция (кальмодулин), приводит к слиянию

везикул с пресинаптической мембраной и кванты медиатора экзоцитозом

выбрасываются в синаптическую щель, достигает постсинаптической мембраны,

на которой находятся рецепторы. Медиатор связывается с рецептором и

возникает деполяризация постсинаптической мембраны. Так работает

возбуждающий синапс, медиатором у которого может быть ацетилхолин.

Однако передача сигнала по нервному волокну осуществляется импульсами

и к каждому последующему импульсу на постсинаптической мембране должен

восстановиться мембранный потенциал. Это возможно благодаря тому, что в

синаптической щели находится фермент, разрушающий медиатор, благодаря чему

восстанавливается мембранный потенциал. Для каждого медиатора имеются

специфические ферменты. Таким образом, мы описали работу возбуждающего

Однако кроме возбуждающих синапсов имеются тормозные, которые имеют

специфические медиаторы (допомин, ГАМК и др.). В катехоламинергических

синапсах, где медиатором является норадреналин, серонин, дофомин. После

каждого импульса часть медиатора разрушается ферментом, а остальная –

захватывается обратно через пресинаптическую мембрану.

В возбуждающих синапсах медиатор вызывает деполяризацию

постсинаптической мембраны, а в тормозных – гиперполяризацию (т.е.

увеличивается величина мембранного потенциала).

Синапсы бывают химические и электрические, выше мы рассматривали

работы химических синапсов. В химических синапсах величина синаптической

щели составляет от 100 до 40 ангстрем. В электрических синапсах эта

величина составляет от 20 до 59 ангстрем. У человека в ЦНС находятся

химические синапсы.
Обзор
Сложность и многообразие нервной системы зависит от взаимодействия между нейронами, которые, в свою очередь, представляют собой набор различных сигналов, передаваемых в рамках взаимодействия нейронов с другими нейронами или мышцами и железами. Сигналы испускаются и распространяются с помощью ионов, генерирующих электрический заряд, который движется вдоль нейрона.

Тело клетки
Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), снаружи ограничена мембраной из двойного слоя липидов(билипидный слой). Липиды состоят из гидрофильных головок и гидрофобных хвостов, расположены гидрофобными хвостами друг к другу, образуя гидрофобный слой, который пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). На мембране находятся белки: на поверхности (в форме глобул), на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в них находятся ионные каналы.
Нейрон состоит из тела диаметром от 3 до 100 мкм, содержащего ядро (с большим количеством ядерных пор) и другие органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), и отростков. Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона.
Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Схема строения нейрона
Аксон — обычно длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты — как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами.
Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.
Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик — образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.

Синапс
Си́напс — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсы вызывают деполяризацию нейрона, другие — гиперполяризацию; первые являются возбуждающими, вторые — тормозящими. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.

Структурная классификация
На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.
Безаксонные нейроны — небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.
Униполярные нейроны — нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге.
Биполярные нейроны — нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
Мультиполярные нейроны — Нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе
Псевдоуниполярные нейроны — являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (т. е. находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Функциональная классификация
По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).
Афферентные нейроны (чувствительный, сенсорный или рецепторный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.
Эфферентные нейроны (эффекторный, двигательный или моторный). К нейронам данного типа относятся конечные нейроны — ультиматные и предпоследние – неультиматные.
Ассоциативные нейроны (вставочные или интернейроны) — эта группа нейронов осуществляет связь между эфферентными и афферентными, их делят на комиссуральные и проекционные (головной мозг).

Морфологическая классификация
Морфологическое строение нейронов многообразно. В связи с этим при классификации нейронов применяют несколько принципов:

учитывают размеры и форму тела нейрона,

количество и характер ветвления отростков,

длину нейрона и наличие специализированные оболочки.

По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120—150 мкм у гигантских пирамидных нейронов. Длина нейрона у человека составляет от 150 мкм до 120 см.

По количеству отростков выделяют следующие морфологические типы нейронов
— униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге ;
— псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях ;
— биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях ;
— мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС .
Развитие и рост нейрона

Конус роста
Нейрон развивается из небольшой клетки — предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако, вопрос о делении нейронов в настоящее время остаётся дискуссионным. [2](рус.)) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении — некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему.
Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, имеющиеся в теле нейрона.
Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне. Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания. Конус роста — это область быстрого экзоцитоза и эндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.
Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

Невроло́гия — раздел медицины, занимающийся вопросами возникновения заболеваний центральной и периферической нервной системы, а также изучающий механизмы их развития, симптоматику и возможные способы диагностики, лечения или профилактики.

источник

Структурные образования заднего мозга:

1) V–XII пара черепных нервов.

3) ядра ретикулярной формации.

Основные функции заднего мозга – проводниковая и рефлекторная.

Через задний мозг проходят нисходящие пути (кортикоспинальный и экстрапирамидный), восходящие – ретикуло– и вестибулоспинальный, отвечающие за перераспределение мышечного тонуса и поддержание позы тела.

Рефлекторная функция обеспечивает:

1) защитные рефлексы (слезотечение, мигание, кашель, рвота, чихание);

2) центр речи обеспечивает рефлексы голосообразования, ядра X, XII, VII черепно-мозговых нервов, дыхательный центр регулирует поток воздуха, кора больших полушарий – центр речи;

3) рефлексы поддержания позы (лабиринтные рефлексы). Статические рефлексы поддерживают тонус мышц для сохранения позы тела, статокинетические перераспределяют тонус мышц для принятия позы, соответствующей моменту прямолинейного или вращательного движения;

4) центры, расположенные в заднем мозге, регулируют деятельность многих систем.

Сосудистый центр осуществляет регуляцию сосудистого тонуса, дыхательный – регуляцию вдоха и выдоха, комплексный пищевой центр – регуляцию секреции желудочных, кишечных желез, поджелудочной железы, секреторных клеток печени, слюнных желез, обеспечивает рефлексы сосания, жевания, глотания.

Повреждение заднего мозга приводит к утрате чувствительности, волевой моторики, терморегуляции, но дыхание, величина артериального давления, рефлекторная активность при этом сохраняются.

Структурные единицы среднего мозга:

4) ядра III–IV пары черепно-мозговых нервов.

Бугры четверохолмия выполняют афферентную функцию, остальные образования – эфферентную.

Бугры четверохолмия тесным образом взаимодействуют с ядрами III–IV пары черепно-мозговых нервов, красным ядром, со зрительным трактом. За счет этого взаимодействия происходит обеспечение передними буграми ориентировочной рефлекторной реакции на свет, а задними – на звук. Обеспечивают жизненно важные рефлексы: старт-рефлекс – двигательная реакция на резкий необычный раздражитель (повышение тонуса сгибателей), ориентир-рефлекс – двигательная реакция на новый раздражитель (поворот тела, головы).

Передние бугры с ядрами III–IV черепно-мозговых нервов обеспечивают реакцию конвергенции (схождение глазных яблок к срединной линии), движение глазных яблок.

Красное ядро принимает участие в регуляции перераспределения мышечного тонуса, в восстановлении позы тела (повышает тонус сгибателей, понижает тонус разгибателей), поддержании равновесия, подготавливает скелетные мышцы к произвольным и непроизвольным движениям.

Черное вещество мозга координирует акт глотания и жевания, дыхания, уровень кровяного давления (патология черного вещества мозга ведет к повышению кровяного давления).

В состав промежуточного мозга входят таламус и гипоталамус, они связывают ствол мозга с корой большого мозга.

Таламус – парное образование, наиболее крупное скопление серого вещества в промежуточном мозге.

Топографически выделяют передние, средние, задние, медиальные и латеральные группы ядер.

а) переключающие, релейные – получают первичную информацию от различных рецепторов. Нервный импульс по таламокортикальному тракту идет в строго ограниченную зону коры головного мозга (первичные проекционные зоны), за счет этого возникают специфические ощущения. Ядра вентрабазального комплекса получают импульс от рецепторов кожи, проприорецепторов сухожилий, связок. Импульс направляется в сенсомоторную зону, происходит регуляция ориентировки тела в пространстве. Латеральные ядра переключают импульс от зрительных рецепторов в затылочную зрительную зону. Медиальные ядра реагируют на строго определенную длину звуковой волны и проводят импульс в височную зону;

б) ассоциативные (внутренние) ядра – первичный импульс идет от релейных ядер, перерабатывается (осуществляется интегративная функция), передается в ассоциативные зоны коры головного мозга, активность ассоциативных ядер возрастает при действии болевого раздражителя;

2) неспецифические ядра – неспецифический путь передачи импульсов в кору головного мозга, изменяется частота биопотенциала (моделирующая функция);

3) моторные ядра – участвуют в регуляции двигательной активности. Импульсы от мозжечка, базальных ядер идут в моторную зону, осуществляют взаимосвязь, согласованность, последовательность движений, пространственную ориентацию тела.

Таламус – коллектор всей афферентной информации, кроме обонятельных рецепторов, важнейший интегративный центр.

Гипоталамус находится на дне и по бокам III желудочка мозга. Структуры: серый бугор, воронка, сосцевидные тела. Зоны: гипофизотропная (преоптические и передние ядра), медиальная (средние ядра), латеральная (наружные, задние ядра).

Физиологическая роль – высший подкорковый интегративный центр вегетативной нервной системы, который оказывает действие на:

Читайте также:  Запах ацетона от мочи и рвота

1) терморегуляцию. Передние ядра – это центр теплоотдачи, где происходит регуляция процесса потоотделения, частоты дыхания и тонуса сосудов в ответ на повышение температуры окружающей среды. Задние ядра – центр теплопродукции и обеспечения сохранности тепла при понижении температуры;

2) гипофиз. Либерины способствуют секреции гормонов передней доли гипофиза, статины тормозят ее;

3) жировой обмен. Раздражение латеральных (центр питания) ядер и вентромедиальных (центр насыщения) ядер ведет к ожирению, торможение – к кахексии;

4) углеводный обмен. Раздражение передних ядер ведет к гипогликемии, задних – к гипергликемии;

5) сердечно-сосудистую систему. Раздражение передних ядер оказывает тормозное влияние, задних – активирующее;

6) моторную и секреторную функции ЖКТ. Раздражение передних ядер повышает моторику и секреторную функцию ЖКТ, задних – тормозит половую функцию. Разрушение ядер ведет к нарушению овуляции, сперматогенеза, снижению половой функции;

7) поведенческие реакции. Раздражение стартовой эмоциональной зоны (передние ядра) вызывает чувство радости, удовлетворения, эротические чувства, стопорной зоны (задние ядра) – вызывает страх, чувство гнева, ярости.

Ретикулярная формация ствола мозга – скопление полиморфных нейронов по ходу ствола мозга.

Физиологическая особенность нейронов ретикулярной формации:

1) самопроизвольная биоэлектрическая активность. Ее причины – гуморальное раздражение (повышение уровня углекислого газа, биологически активных веществ);

2) достаточно высокая возбудимость нейронов;

3) высокая чувствительность к биологически активным веществам.

Ретикулярная формация имеет широкие двусторонние связи со всеми отделами нервной системы, по функциональному значению и морфологии делится на два отдела:

1) растральный (восходящий) отдел – ретикулярная формация промежуточного мозга;

2) каудальный (нисходящий) – ретикулярная формация заднего, среднего мозга, моста.

Физиологическая роль ретикулярной формации – активация и торможение структур мозга.

Лимбическая система – совокупность ядер и нервных трактов.

Структурные единицы лимбической системы:

5) парагиппокамповая извилина;

Основные функции лимбической системы:

1) участие в формировании пищевого, полового, оборонительного инстинктов;

2) регуляция вегетативно-висцеральных функций;

3) формирование социального поведения;

4) участие в формировании механизмов долговременной и кратковременной памяти;

5) выполнение обонятельной функции;

6) торможение условных рефлексов, усиление безусловных;

7) участие в формировании цикла «бодрствование – сон».

Значимыми образованиями лимбической системы являются:

1) гиппокамп. Его повреждение ведет к нарушению процесса запоминания, обработки информации, снижению эмоциональной активности, инициативности, замедлению скорости нервных процессов, раздражение – к повышению агрессии, оборонительных реакций, двигательной функции. Нейроны гиппокампа отличаются высокой фоновой активностью. В ответ на сенсорное раздражение реагируют до 60 % нейронов, генерация возбуждения выражается в длительной реакции на однократный короткий импульс;

2) миндалевидные ядра. Их повреждение ведет к исчезновению страха, неспособности к агрессии, гиперсексуальности, утраты реакций ухода за потомством, раздражение – к парасимпатическому эффекту на дыхательную и сердечно-сосудистую, пищеварительную системы. Нейроны миндалевидных ядер имеют выраженную спонтанную активность, которая тормозится или усиливается сенсорными раздражителями;

3) обонятельная луковица, обонятельный бугорок.

Лимбическая система оказывает регулирующее влияние на кору головного мозга.

Высшим отделом ЦНС является кора больших полушарий, ее площадь составляет 2200 см 2 .

Кора больших полушарий имеет пяти-, шестислойное строение. Нейроны представлены сенсорными, моторными (клетки Бетца), интернейронами (тормозные и возбуждающие нейроны).

Кора полушарий построена по колончатому принципу. Колонки – функциональные единицы коры, делятся на микромодули, которые имеют однородные нейроны.

По определению И. П. Павлова, кора больших полушарий – главный распорядитель и распределитель функций организма.

Основные функции коры больших полушарий:

1) интеграция (мышление, сознание, речь);

2) обеспечение связи организма с внешней средой, приспосабливает его к ее изменениям;

3) уточнение взаимодействия между организмом и системами внутри организма;

4) координация движений – возможность осуществлять произвольные движения, делать непроизвольные движения более точными, осуществлять двигательные задачи.

Эти функции обеспечиваются корригирующими, запускающими, интегративными механизмами.

И. П. Павлов, создавая учение об анализаторах, выделял три отдела: периферический (рецепторный), проводниковый (3-нейронный путь передачи импульса с рецепторов), мозговой (определенные области коры больших полушарий, где происходит переработка нервного импульса, который приобретает новое качество). Мозговой отдел состоит из ядер анализатора и рассеянных элементов. Ядерные части не перекрываются, здесь происходят анализ и синтез, превращение импульса в ощущение. Рассеянные элементы осуществляют грубый анализ и синтез полученной информации. Для каждого анализатора в коре имеется своя зона (зрительного – в затылочной области, слухового – в височной и т. д.).

Согласно современным представлениям о локализации функций при прохождении импульса в коре головного мозга возникают три типа поля.

1. Первичная проекционная зона лежит в области центрального отдела ядер анализаторов, где впервые появился электрический ответ (вызванный потенциал), нарушения в области центральных ядер ведут к нарушению ощущений.

2. Вторичная зона лежит в окружении ядра, не связана с рецепторами, по вставочным нейронам импульс идет из первичной проекционной зоны. Здесь устанавливается взаимосвязь между явлениями и их качествами, нарушения ведут к нарушению восприятий (обобщенных отражений).

3. Третичная (ассоциативная) зона имеет мультисенсорные нейроны. Информация переработана до значимой. Система способна к пластической перестройке, длительному хранению следов сенсорного действия. При нарушении страдают форма абстрактного отражения действительности, речь, целенаправленное поведение.

Совместная работа больших полушарий и их асимметрия

Для совместной работы полушарий имеются морфологические предпосылки. Мозолистое тело осуществляет горизонтальную связь с подкорковыми образованиями и ретикулярной формацией ствола мозга. Таким образом осуществляется содружественная работа полушарий (иррадиация возбуждения из одного полушария в другое) и реципрокная иннервация при совместной работе.

Функциональная асимметрия. В левом полушарии доминируют речевые, двигательные, зрительные и слуховые функции. Мыслительный тип нервной системы является левополушарным, а художественный – правополушарным.

Тема 10. Двигательная активность. Роль различных отделов центральной нервной системы в регуляции двигательной активности

Двигательная функция наиболее важна для организма человека. Благодаря ей осуществляются:

1) поддержание позиции тела человека в пространстве;

2) перемещение положения тела в пространстве;

3) профессиональные манипуляции.

Двигательная активность обеспечивается за счет динамической и статической работы мускулатуры – быстрых сокращений и расслаблений.

К мышечной работе относятся произвольные движения и непроизвольные (рефлекторные сокращения), работа дыхательной мускулатуры, глотание.

Статическая работа осуществляется за счет перераспределения мышечного тонуса. Она обеспечивает постоянное положение тела в пространстве, равновесие.

Спинной мозг регулирует двигательную активность за счет α-мотонейронов передних рогов и γ-мотонейронов. α-мотонейроны иннервируют экстрафузальные мышечные волокна скелетных мышц, а γ-мотонейроны иннервируют интрафузальные мышечные волокна в составе мышечных веретен. При возбуждении γ-мотонейронов изменяется степень натяжения интрафузальных волокон и поддерживается на определенном уровне чувствительность мышечных веретен. β-мотонейроны являются промежуточными. При возбуждении мотонейронов импульсы поступают к интра– и экстрафузальным мышечным волокнам, происходит сокращение мышцы и одновременно – напряжение интрафузальных волокон.

Спинной мозг участвует в регуляции двигательной активности за счет регуляции мышечного тонуса и обеспечения простых двигательных рефлексов.

Сухожильные рефлексы возникают при возбуждении сухожильных рецепторов. Быстро происходит перераспределение мышечного тонуса. При переходе в вертикальное положение тела происходит растяжение скелетных мышц, возбуждаются сухожильные рецепторы. Нервный импульс передается на α-мотонейроны передних рогов спинного мозга – происходит перераспределение мышечного тонуса, что необходимо для поддержания положения тела в пространстве. Быстрое перераспределение мышечного тонуса осуществляется за счет простых моносинаптических рефлекторных дуг. Адекватным раздражителем для сухожильных рецепторов является растяжение мышц. Изучение сухожильных рефлексов используется в клинической практике.

Коленный рефлекс – при поколачивании по сухожилию четырехглавой мышцы бедра происходит сокращение этой мышцы, в результате чего отмечается рефлекторное сгибание голени.

Ахиллов рефлекс – при поколачивании по сухожилию трехглавой мышцы голени сокращается икроножная мышца, что приводит к рефлекторному сгибанию стопы.

Рефлекс с двуглавой мышцей плеча – при ударе по сухожилию бицепса над локтевым сгибом происходит сокращение двуглавой мышцы, что ведет к сгибанию предплечья.

Рефлекс с трехглавой мышцей плеча – отмечается разгибание предплечья при ударе по сухожилию трехглавой мышцы.

Периостальные рефлексы с лучевой кости – при ударе по шиловидному отростку лучевой кости происходит сгибание руки в локтевом суставе, а также частично пронация и сгибание плеча.

Спинной мозг также осуществляет регуляцию мышечного тонуса за счет позднотонических рефлексов. Эти рефлексы возникают при возбуждении рецепторов мышц и фасций шеи – при изменении положения головы. От них импульсы поступают в шейный отдел спинного мозга – происходит перераспределение мышечного тонуса.

Роль спинного мозга в регуляции двигательной активности осуществляется за счет двух двигательных актов: рефлексов сгибания и разгибания, простых локомоторных рефлексов.

Рефлекс сгибания и разгибания возникает при раздражении рецепторов кожи и вызывает на стороне раздражения сгибание скелетных мышц, а на противоположной стороне – разгибание. В спинном мозге при этом на стороне раздражения активируются центры сгибания скелетной мускулатуры и тормозятся центры разгибания, на противоположной стороне, наоборот, происходят активация центров разгибания и торможение центров сгибания – принцип реципрокности. Эта рефлекторная дуга обеспечивает защиту конечностей от повреждений и участвует в поддержании положения тела в пространстве.

Простые локомоторные рефлексы. Мотонейроны спинного мозга обладают фоновой ритмической активностью. Они могут в покое генерировать нервные импульсы, которые возникают при ходьбе. У взрослых эти рефлексы регулируются вышележащими отделами центральной нервной системы. У детей первых месяцев жизни характерны следующие безусловные двигательные рефлексы:

1) сосательный рефлекс – при тактильном раздражении губ ребенок поворачивает голову в сторону раздражения и производит сосательные движения. При нормальном развитии сосательный рефлекс исчезает к концу первого года жизни;

2) рефлекс автоматического зрительного прослеживания – ребенок следит за движущимся световым сигналом. Этот рефлекс проявляется в середине третьего месяца жизни и примерно через месяц исчезает;

3) хватательный рефлекс (рефлекс Робинзона) – при раздражении ладони ребенка пальцы и кисть сжимаются, охватывая предмет. Хватательный рефлекс отмечается до 3–4 месяцев жизни ребенка;

4) рефлекс Моро – ребенка кладут на спину и ударяют по столу. Рефлекторный ответ выражается в разгибании рук, направлении их вверх и в стороны. Рефлекс исчезает к четырем месяцам;

5) подошвенный рефлекс (рефлекс Бабинского) – при штриховом тактильном раздражении внутреннего или наружного края подошвы наблюдается рефлекторное разгибание пальцев стопы. Подошвенный рефлекс сохраняется до 2 лет.

Ствол мозга представлен продолговатым мозгом, средним мозгом и ретикулярной формацией ствола мозга.

Продолговатый мозг принимает участие в регуляции двигательной активности – в состав ядер черепных нервов входят двигательные ядра (V пара черепных нервов отвечает за двигательную иннервацию жевательной мускулатуры, VI пара черепных нервов – за движение глазных яблок). Продолговатый мозг обеспечивает сложные двигательные реакции рефлекторного характера – жевание, движение мимической мускулатуры, защитные рефлексы (кашель, чихание).

Роль вестибулярных ядер в регуляции двигательной активности

Вестибулярные ядра входят в VIII пару черепных нервов. Это группа ядер, из которых наиболее важным является ядро Дейтерса. Вестибулярные ядра получают информацию от рецепторов вестибулярного аппарата и передают ее на α– и γ-мотонейроны спинного мозга.

Вестибулярные ядра активируют α-мотонейроны мышц разгибателей – происходит повышение их тонуса с целью поддержания положения тела в пространстве.

Вестибулярные ядра посылают импульсы к медиальному продолговатому пучку ствола мозга. Он объединяет в единое ядра черепно-мозговых нервов, вызывающих движение глазных яблок (III, IV, VI пары – глазодвигательные нервы). При возбуждении вестибулярных рецепторов при участии вестибулярных ядер возникает глазной нистагм. Глазные яблоки совершают медленные движения в сторону, противоположную движению тела, затем быстро возвращаются в сторону движения. Это необходимо для фокусирования изображения в строго определенном участке сетчатки глаза для правильной ориентации в окружающей среде и пространстве.

Таким образом, вестибулярные ядра выполняют в регуляции двигательной активности следующие функции:

1) участвуют в перераспределении мышечного тонуса, повышают тонус мышц-разгибателей;

2) способствуют ориентации в пространстве;

3) обеспечивают равновесие тела;

4) участвуют в координации движений.

Роль среднего мозга в регуляции двигательной активности

Средний мозг принимает участие в регуляции двигательной активности за счет:

1) ядер III и IV пар черепно-мозговых нервов;

Ядра III и IV пар относятся к черепно-мозговым нервам. Они способствуют фиксации взгляда и обеспечивают ориентацию тела в пространстве.

Красные ядра получают информацию из вышележащих отделов центральной нервной системы – коры больших полушарий, мозжечка, подкорковых структур. От красных ядер по волокнам руброспинального тракта импульсы идут в спинной мозг. Они активируют центры мышц сгибателей. Это нужно для поддержания положения тела в пространстве. При перерезке спинного мозга между продолговатым и средним мозгом (у бульбарных животных) преобладает тонус мышц-разгибателей. Если такое животное положить на бок, то оно не может вернуться в исходное положение.

1) участвуют в перераспределении мышечного тонуса в пользу мышц;

2) способствуют ориентации в пространстве;

3) обеспечивают поддержание равновесия;

4) способствуют восстановлению измененного положения тела;

5) обеспечивают подготовку тонуса мышц к произвольным движениям.

Черная субстанция располагается в ножках мозга и получает импульсы от различных структур головного мозга, в первую очередь от базальных ганглиев. В состав черной субстанции входят дофаминэргические нейроны. От этих нейронов отростки идут к базальным ганглиям. Дофамин выполняет функция тормозного медиатора и принимает участие в регуляции двигательной активности. Аксоны дофаминэргических нейронов направляются к мотонейронам спинного мозга, при активации этого проводящего пути происходит торможение активности α-мотонейронов.

Функции черной субстанции:

1) участвуют в перераспределении мышечного тонуса, оказывают тормозное влияние;

2) вместе с базальными ганглиями участвуют в регуляции сложных движений;

3) обеспечивают контроль за степенью сокращения γ-мотонейронов.

Крыша среднего мозга – тектальная область. В ее состав входят бугры четверохолмия и вентрально расположенные нейроны. Бугры четверохолмия получают импульсы от зрительных и слуховых рецепторов – это высшие подкорковые центры слуха и зрения. Верхний бугор – зрительный центр, а нижний – слуховой центр. От нейронов бугров четверохолмия начинаются нисходящие тектоспинальные пути к α-мотонейронам передних рогов спинного мозга. Этот путь обеспечивает двигательные реакции в ответ на чрезмерные слуховые и зрительные раздражители.

Функции крыши среднего мозга:

1) обеспечение зрительных и слуховых рефлексов;

2) реакция двигательных рефлексов в ответ на чрезмерные слуховой или зрительный раздражитель;

3) ориентировочные рефлексы в ответ на новый звук или образ;

4) обеспечение безусловных оборонительных рефлексов.

Роль ретикулярной формации ствола мозга в регуляции двигательной активности

Ретикулярная формация ствола мозга – это скопление особого вида нейронов, которые имеют многочисленные сильно ветвящиеся аксоны. За счет этих отростков нейроны ретикулярной формации образуют многочисленные контакты между собой.

Нейроны ретикулярной формации обладают спонтанной ритмической активностью (они способны генерировать нервные импульсы) и повышенной чувствительностью к действию биологически активных веществ. В состав ретикулярной формации входят различные нейроны по видам выделения медиатора.

Функции ретикулярной формации

1. Нейроны ретикулярной формации входят в состав жизненно важных центров продолговатого мозга – дыхательного, сосудодвигательного, пищевого.

2. Нейроны обеспечивают неспецифический путь передачи импульсов в кору больших полушарий. К ним поступают многочисленные импульсы с периферии, но не от рецепторов, а по коллатералям афферентных путей. Поступив в нейрон, импульс теряет свою специфичность, затем он поступает в кору больших полушарий. Там он не вызывает специфических ощущений, но поддерживает определенный уровень возбудимости коры больших полушарий. При отключении ретикулярной формации в коре больших полушарий преобладает торможение. Нейроны ретикулярной формации могут оказывать и тормозное влияние на кору, но это явление полностью не изучено.

3. Нейроны ретикулярной формации регулируют активность мотонейронов спинного мозга – нисходящее тормозное влияние.

4. Ретикулярная формация продолговатого мозга активирует тонус мышц сгибателей, а ретикулярная формация моста повышает тонус разгибателей.

За счет ретикулярной формации на каждом уровне ствола мозга возникает нейрон, который активирует сгибатели и разгибатели.

Таким образом, ретикулярная формация:

1) участвует в регуляции мышечного тонуса;

2) обеспечивает ориентацию в пространстве;

3) обеспечивает равновесие и координацию движений;

4) обеспечивает двигательные пищевые рефлексы – жевание, глотание, сосание;

5) обеспечивает ориентировочные рефлексы, мимические реакции, осуществляет сложные двигательные акты, выполняя контроль за ними.

Тонические рефлексы ствола мозга

Тонические рефлексы регулируют мышечный тонус и обеспечивают правильное положение тела в пространстве.

Выделяют статические тонические рефлексы и статокинетические.

Статические – это рефлексы, которые обеспечивают поддержание тонуса при неподвижном положении тела – лежа или стоя. Выделяют познотонические рефлексы, которые возникают при изменении положения головы и возбуждении рецепторов фасций и мышц шеи. Импульсы поступают в ствол мозга и ретикулярную формацию, к вестибулярным и красным ядрам, а оттуда по нисходящим путям направляются к α-мотонейронам спинного мозга. Таким образом осуществляется правильное поддержание тела в пространстве. Выпрямительные (или установочные) рефлексы возникают при отклонении положения тела относительно земли.

Возникает возбуждение вестибулярных рецепторов, проприорецепторов, тактильных рецепторов кожи, зрительных и слуховых рецепторов. Импульсы поступают в ствол мозга, оттуда – на мотонейроны спинного мозга, происходит перераспределение мышечного тонуса для сохранения позы тела.

Статокинетические рефлексы обеспечивают перераспределение мышечного тонуса при движении. Выделяют рефлексы, возникающие при прямолинейном и вращательном движениях. При прямолинейном движении рефлексы возникают за счет изменения скорости. Возбуждаются рецепторы отолитового аппарата, преддверия улитки, оттуда они направляются к вестибулярным ядрам, и происходит перераспределение мышечного тонуса. При вращательном движении с изменением скорости возбуждаются рецепторы полукружных каналов. Импульсы направляются к вестибулярным ядрам, происходит перераспределение мышечного тонуса.

источник